# МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Оренбургской области Отдел образования администрации Гайского городского округа МАОУ "СОШ № 6"

РАССМОТРЕНО

На заседании ШМО учителей естественноматематического цикла

Руководитель ШМО \_\_\_\_\_Ишалбаева Э.Ш.

Протокол №1 от «29» августа 2023 г.

СОГЛАСОВАНО

Заместитель директора

Крюкова Е.В.

**УТВЕРЖДЕНО** 

Директор МАОУ «СОШ №6»

\_Крылова Т.С.

от «30» августа 2023 г.

МАОУ СОШ №6»

## РАБОЧАЯ ПРОГРАММА

(ID 504095)

учебного предмета «Физика»

Углубленный уровень

для обучающихся 11 класса

#### ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

#### 1. Пояснительная записка

#### 1.1. Нормативно-правовая основа

Рабочая программа учебного предмета «Физика» (профильный уровень) ориентирована на обучающихся 10-11 классов и направлена на формирование у обучающихся функциональной грамотности и метапредметных умений через выполнение исследовательской и практической деятельности на углубленном уровне.

Изучение физики на углубленном уровне включает расширение предметных результатов и содержание, ориентированное на подготовку к последующему профессиональному образованию.

Изучение предмета на углубленном уровне позволяет сформировать у обучающихся физическое мышление, умение систематизировать и обобщать полученные знания, самостоятельно применять полученные знания для решения практических и учебно-исследовательских задач; умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия бытовой и производственной деятельности человека, связанной с использованием источников энергии.

Рабочая программа разработана на основе следующих документов:

- 1. Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской федерации»;
- 2. Федеральный государственный образовательный стандарт среднего общего образования, утвержденный Приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413 (в действующей редакции);
- 3 Примерная основная образовательная программы среднего общего образования, одобренная решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г №2/16-з);
- 4. Программа среднего (полного) общего образования. Физика 10-11 классы. Углубленный уровень (автор В.А. Касьянов). М. Дрофа.2013г.
- 5. Концепция учебного предмета «Физика» от 3.12.19г. приказ ПК-4вн.
- 1.2. Место учебного предмета в учебном плане (количество учебных часов, на которые рассчитана рабочая программа в соответствии с учебным планом, календарным учебным графиком, обоснование увеличения количества учебных часов (при необходимости).

Программа по физике составлена на основе требований к предметным результатам освоения основной образовательной программы, представленной в федеральном государственном образовательном стандарте основного среднего образования. В соответствии с учебным планом МАОУ «СОШ № 6» предмет «Физика» в 11а классах изучается на углубленном уровне в классе физико – математического профиля.

Возможно проведение уроков в электронном формате (по мере необходимости), учитывая специфику дистанционной площадки образовательного учреждения (https://6schoolgai.ucoz.ru/)

Программой отводится на изучение физики 345 часов, которые распределены следующим образом:

10 класс: 170 часов, 5 часов в неделю.

11 класс: 165 часов, 5 часов в неделю.

# 1.3. Используемый учебно-методический комплект, включая электронные ресурсы, а также дополнительно используемые информационные ресурсы.

Рабочая программа обеспечена учебниками, учебными пособиями, включенными в федеральный перечень учебников, рекомендуемых Минобрнауки РФ к использованию (приказ Минобрнауки РФ от 31.03.2014 № 253 с изменениями от 08.06.2015 № 576, от

28.12.2015 № 1529, ot26.01.2016 № 38, 21.04.2016 № 459, ot 29.12.2016 № 1677, ot 08.06.2017 № 535, ot 20.06.2017 № 581, ot 05.07.2017 № 329:

- 1) Физика. 10 класс. Учебник для общеобразовательных учреждений. Углубленный уровень. В.А. Касьянов. М.: Дрофа, 2017.
- 2) Физика. 11 класс. Учебник для общеобразовательных учреждений. Углубленный уровень. В.А. Касьянов. М.: Дрофа, 2019.

# 1.3 Формы, периодичность и порядок текущего контроля успеваемости и промежуточной аттестации обучающихся

Оценивание обучающихся производится согласно «Положению о формах, периодичности и порядке текущего контроля успеваемости и промежуточной аттестации обучающихся», «Положению о порядке выставления текущих, четвертных, полугодовых, годовых и итоговых отметок».

Рабочая программа предусматривает следующие формы промежуточной и итоговой аттестации: устные опросы, проверочные работы, самостоятельные работы, тестирование, обобщающие уроки, контрольные работы, итоговые тематические и интегрированные (комплексные) работы, мониторинг разного уровня (административный, муниципальный, региональный), работы в форме ЕГЭ.

Обобщающие уроки нацелены на конкретизацию полученных знаний, выполнение обучающимися проверочных заданий в форме тестирования или проверочных работ, которые позволят убедиться в том, что основной материал был усвоен.

В конце изучения темы предусмотрено проведение контрольно-методических срезов на выявление уровня мыслительных навыков обучающихся.

Мониторинг индивидуальных образовательных достижений обучающихся строится на следующих видах оценивания:

- 1. Стартовое оценивание.
- 2. Текущее оценивание.
- 3. Итоговое оценивание.

Оценка планируемых результатов освоения предмета «Физика» учащимися проводится через самостоятельные и контрольные работы на основе методических пособий:

- 1. Контрольные и самостоятельные работы по физике . 10, 11 классы. О.И. Громцева М. : Экзамен, 2012.
- 2. Дидактические материалы Физика. 10,11 класс. А.Е.Марон, Е.А. Марон., М,.- Дрофа, 2005г.
- 3. Контроль знаний, умений и навыков учащихся 10-11 классов. В.А. Заболотин, В.Н.Комиссаров., М; Просвещение, 2008г
- 4. Физика. 10, 11 класс. Углубленный уровень. Контрольные работы к учебнику. А В.:Касьянова, М. Вертикаль. 2015г.

#### 2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРЕДМЕТА «ФИЗИКА» НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

#### Углубленный уровень

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного среднего образования:

#### Личностные:

- в ценностно-ориентационной сфере чувство гордости за российскую физическую науку, гуманизм, положительное отношение к труду, целеустремленность;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

#### Метапредметные:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование и т. д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике; использование различных источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

#### Предметные:

- 1. сформированность представлений о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- 2. владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;
- 3. владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; умения обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
- 4. сформированность умения решать физические задачи;
- 5. сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- 6. сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

#### Выпускник на углубленном уровне научится:

- объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- характеризовать взаимосвязь между физикой и другими естественными науками;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;

- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;
- самостоятельно планировать и проводить физические эксперименты;
- решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

#### Выпускник на углубленном уровне получит возможность научиться:

- проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель исследования, на основе знания основополагающих физических закономерностей и законов;
- описывать и анализировать полученную в результате проведенных физических экспериментов информацию, определять ее достоверность;
   понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;
- анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- формулировать и решать новые задачи, возникающие в ходе учебно-исследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

#### Общие предметные результаты изучения данного курса

- структурировать учебную информацию;
- интерпретировать информацию, полученную из других источников, оценивать ее научную достоверность;
- самостоятельно добывать новое для себя физическое знание, используя для этого доступные источники информации;
- прогнозировать, анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с использованием техники;
- владеть экспериментальными методами исследования; оказывать первую помощь при травмах, связанных с лабораторным оборудованием и бытовыми техническими устройствами.

#### 3. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА «Физика»

углубленный уровень. 10 класс

#### Физика и естественно-научный метод познания природы.

Физика — фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками. Методы научного исследования физических явлений. Погрешности измерений физических величин. Моделирование явлений и процессов природы. Закономерность и случайность. Границы применимости физического закона. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

#### Механика

Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений. Равноускоренное прямолинейное движение, свободное падение. движение тела, брошенного под углом к горизонту. Движение точки по окружности. Поступательное и вращательное движение твердого тела.

Взаимодействие тел. Принцип суперпозиции сил. Инерциальная система отсчета. Законы механики Ньютона. Законы Всемирного тяготения, Гука, сухого трения. Движение небесных тел и их искусственных спутников. Явления, наблюдаемые в неинерциальных системах отсчета.

Импульс силы. Закон изменения и сохранения импульса. Работа силы. Закон изменения и сохранения энергии.

Равновесие материальной точки и твердого тела. Условия равновесия твердого тела в инерциальной системе отсчета. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов. Закон сохранения энергии в динамике жидкости и газа.

Механические колебания и волны. Амплитуда, период, частота, фаза колебаний.

Превращения энергии при колебаниях. Вынужденные колебания, резонанс.

Поперечные и продольные волны. Энергия волны. Интерференция и дифракция волн. Звуковые волны.

#### Молекулярная физика и термодинамика

Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики.

Экспериментальные доказательства МКТ. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа.

Модель идеального газа в термодинамике: уравнение Менделеева–Клапейрона, выражение для внутренней энергии. Закон Дальтона. Газовые законы.

Агрегатные состояния вещества. Фазовые переходы. Преобразование энергии в фазовых переходах. Насыщенные и ненасыщенные пары. Влажность воздуха. Модель строения жидкостей. Поверхностное натяжение. Модель строения твердых тел. Механические свойства твердых тел.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Адиабатный процесс. Второй закон термодинамики. Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно. Экологические проблемы теплоэнергетики.

#### Электродинамика

Предмет и задачи электродинамики. Электрическое взаимодействие. Закон сохранения электрического заряда. Закон Кулона. Напряженность и потенциал электростатического поля. Принцип суперпозиции электрических полей. Разность потенциалов. Проводники и

диэлектрики в электростатическом поле. Электрическая емкость. Конденсатор. Энергия электрического поля.

#### 11 класс.

#### Электродинамика

Постоянный электрический ток. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, полупроводниках, газах и вакууме. Плазма. Электролиз. Полупроводниковые приборы. Сверхпроводимость. Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Магнитное поле проводника с током. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца.

Поток вектора магнитной индукции. Явление электромагнитной индукции. Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках. Правило Ленца. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля. Магнитные свойства вещества.

Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Резонанс. Переменный ток. Конденсатор и катушка в цепи переменного тока. Производство, передача и потребление электрической энергии. Элементарная теория трансформатора.

Электромагнитное поле. Вихревое электрическое поле. Электромагнитные волны. Свойства электромагнитных волн. Диапазоны электромагнитных излучений и их практическое применение. Принципы радиосвязи и телевидения.

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Законы отражения и преломления света. Полное внутреннее отражение. Оптические приборы.

Волновые свойства света. Скорость света. Интерференция света. Когерентность. Дифракция света. Поляризация света. Дисперсия света. Практическое применение электромагнитных излучений.

#### Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. *Пространство и время в специальной теории относительности.* Энергия и импульс свободной частицы. Связь массы и энергии свободной частицы. Энергия покоя.

#### Квантовая физика. Физика атома и атомного ядра

Предмет и задачи квантовой физики. Тепловое излучение. Распределение энергии в спектре абсолютно черного тела.

Гипотеза М. Планка о квантах. Фотоэффект. Опыты А.Г. Столетова, законы фотоэффекта. Уравнение А. Эйнштейна для фотоэффекта.

Фотон. *Опыты П.Н. Лебедева и С.И. Вавилова*. Гипотеза Л. де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. *Дифракция электронов*. Давление света. Соотношение неопределенностей Гейзенберга.

Модели строения атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Н. Бора. Спонтанное и вынужденное излучение света.

Состав и строение атомного ядра. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра.

Закон радиоактивного распада. Ядерные реакции, реакции деления и синтеза. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез.

Элементарные частицы. Фундаментальные взаимодействия. Ускорители элементарных частиц.

#### Строение Вселенной

Применимость законов физики для объяснения природы космических объектов. Солнечная система. Звезды и источники их энергии. Классификация звезд. Эволюция Солнца и звезд. Галактика. Другие галактики. Пространственно-временные масштабы наблюдаемой Вселенной. Представление об эволюции Вселенной. Темная материя и темная энергия.

#### Перечень практических и лабораторных работ:

#### Прямые измерения:

- измерение мгновенной скорости с использованием секундомера;
- сравнение масс (по взаимодействию);
- измерение сил в механике;
- измерение температуры жидкостными термометрами;
- оценка сил взаимодействия молекул (методом отрыва капель);
- измерение термодинамических параметров газа;
- измерение ЭДС источника тока;
- измерение силы взаимодействия катушки с током и магнита.

#### Косвенные измерения:

- измерение ускорения;
- измерение ускорения свободного падения;
- измерение удельной теплоты плавления льда;
- измерение напряженности вихревого электрического поля (при наблюдении электромагнитной индукции);
- измерение внутреннего сопротивления источника тока;
- определение показателя преломления среды;
- измерение фокусного расстояния собирающей и рассеивающей линз;
- определение длины световой волны;
- определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

#### Наблюдение явлений:

- наблюдение явления электромагнитной индукции;
- наблюдение волновых свойств света: дифракция, интерференция, поляризация;
- наблюдение спектров;
- вечерние наблюдения звезд, Луны и планет в телескоп или бинокль.

#### Исследования:

- исследование равноускоренного движения с использованием электронного секундомера;
- исследование движения тела, брошенного горизонтально;
- исследование центрального удара;
- исследование изопроцессов;
- исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;
- исследование зависимости силы тока через лампочку от напряжения на ней;
- исследование явления электромагнитной индукции;
- исследование зависимости угла преломления от угла падения;
   исследование зависимости расстояния от линзы до изображения от расстояния от линзы до предмета;
- исследование спектра водорода

4.Тематическое планирование в 10 -11 классе.

|    |                                                     | Количест<br>часов | во          | Количество             |                       |  |
|----|-----------------------------------------------------|-------------------|-------------|------------------------|-----------------------|--|
|    | Раздел                                              | 10 класс          | 11<br>класс | Лабораторны<br>х работ | Контрольных<br>уроков |  |
| 1. | Физика и естественно-научный метод познания природы | 3                 | -           | -                      | 1                     |  |
| 2. | Механика                                            | 72                | -           | 7                      | 4                     |  |
| 3. | Молекулярная физика и термодинамика                 | 57                | -           | 5                      | 4                     |  |
| 4. | Электродинамика                                     | 26                | 111         | 7                      | 6                     |  |
| 5. | Квантовая физика. Физика атома и атомного ядра.     | -                 | 31          | 1                      | 1                     |  |
| 6. | Элементы астрофизики                                |                   | 5           |                        |                       |  |
| 7. | Обобщающее повторение Итоговый контроль.            | 12                | 18          | 0                      | 2                     |  |
|    | ИТОГО                                               | 170               | 165         | 20                     | 18                    |  |

## Оценка ответов учащихся при проведении тестов, контрольных работ

Рекомендованное время выполнения контрольной работы – 45 минут.

Цель: проверить знания обучающихся по данной теме.

Также допускается за письменные работы (контрольные работы, тесты) вычислять отметку исходя из процента правильных ответов:

#### Критерии оценивания работы:

| Виды работ | Контрольные работы |
|------------|--------------------|
| оценка «2» | менее 49%          |
| оценка «3» | от 50% до 69%      |
| оценка «4» | от 70% до 84%      |
| оценка «5» | от 85% до 100%     |

#### Промежуточная аттестация за курс 10 класса по физике

#### 1 вариант

1. Равнодействующая всех сил, действующих на тело, равна нулю. Движется ли это тело

- или находится в состоянии покоя? А. Тело движется равномерно и прямолинейно или находится в состоянии покоя. Б. Тело движется равномерно и прямолинейно. В. Тело нахолится в состоянии покоя. 2. Брусок массой 200 г скользит по льду. Определите силу трения скольжения, действующую на брусок, если коэффициент трения скольжения бруска по льду равен 0.1. A. 0,2 H Б. 2 Н B. 20 H 3. При выстреле из пневматической винтовки вылетает пуля массой m со скоростью v. Какой по модулю импульс получит после выстрела винтовка, если её масса в 150 раз больше массы пули? A. 150my B. mv/150Б. mv 4. Газу передано количество теплоты 200 Дж. При этом он совершил работу 400 Дж. Как изменилась внутренняя энергия газа? А.  $\Delta U$ =200 Дж. Б.  $\Delta U$ = -200 кДж В. ΔU= -200 Дж. 5. К источнику тока с ЭДС, равной 24 В, и внутренним сопротивлением 2 Ом подключили электрическое сопротивление 4 Ом. Определите силу тока в цепи. Б. 4 А A. 6 A B. 12 A Решите задачи и запишите ответ. 0 6. Графики движения двух тел представлены на рисунке 102. -10 Начальная координата первого тела м, второго м. Место и время их встречи \_\_\_\_\_м, \_\_\_\_с. -20 Скорость второго тела м/с. Рис. 102 Уравнение движения первого тела 7. Два одинаковых тела, имеющих заряды 18 мкКл и -9 мкКл, привели в соприкосновение и разъединили. На каком расстоянии друг от друга эти заряды взаимодействуют с силой 9мН? м 8. Каково перемещение тела, свободно падающего с высоты 125 м, за последнюю секунду падения? м Решите задачи, представив развёрнутое решение. 9. Тело массой 5 кг движется по горизонтальной поверхности под действием силы 100 Н,
- 9. Тело массой 5 кг движется по горизонтальной поверхности под действием силы 100 H, направленной горизонтально. Определите ускорение тела, если известно, что коэффициент трения между телом и поверхностью 0,2.
- 10. Сколько дров нужно сжечь в печке с КПД 40%, чтобы получить из 200 кг снега, взятого при температуре  $-10^{0}$ С, воду при  $20^{0}$ С? Удельная теплота плавления льда 330кДж/кг, удельная теплоёмкость льда 2,1 кДж/кг-К, удельная теплоёмкость воды 4,2 кДж/кг-К, температура плавления льда  $0^{0}$ С.

Промежуточная аттестация за курс 10 класса по физике 2 вариант

| А. Равн                      | будет двигаться тело<br>омерно со скоростью<br>окоиться                                             |                                                                                 |                                             |                                             | В.                           |
|------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------|
|                              | ие силы нужно прило<br>ть её на 1 мм?<br>И Б. 1 Н                                                   | жить к концам                                                                   | проволоки жёсткостн<br>В. 100 Н             | ью 100 кH/м, ч                              | тобы                         |
|                              | о брошено вертикалы<br>поднимется тело?<br>Б. 10 м                                                  | но вверх со ско                                                                 | ростью 10 м/с. На кан<br>В. 5 м             | сую максимал                                | ьную                         |
| теплоті                      | ислите КПД теплово<br>ы 1000 Дж и холодилі<br>ь. Б. 70 % В. 2:                                      | ьнику передаёт                                                                  |                                             | агревателя ко                               | личество                     |
|                              | кой силой взаимодей<br>уг от друга?                                                                 | ствуют два зар                                                                  | яда по 10 нКл, находя                       | ящиеся на рас                               | стоянии                      |
| A. 9 Н                       | уг от друга:<br>Б. 10 Н                                                                             |                                                                                 | В. 0,001Н                                   |                                             | 60 2/1                       |
| Решит                        | е задачи и запишите                                                                                 | ответ.                                                                          |                                             |                                             | 40                           |
| Началь<br>Место              | фики движения двух ная координата первои время их встречи ть второго тела                           | ого тела<br>м,                                                                  | м, второго м.                               | -:<br>4                                     | 0 /10 20 30 40 50 1<br>40 60 |
|                              | ние движения первог                                                                                 |                                                                                 |                                             |                                             | Рис. 100                     |
| 7. Как                       | овы показании ампер<br>точника 6 В, его внут                                                        | метра, включён                                                                  | ного в цепь, если R <sub>1</sub>            |                                             | R <sub>2</sub>               |
|                              | ашни высотой 45 м го<br>ет на землю?                                                                | -                                                                               | оошен камень. Через                         | какое время                                 | ε, γ                         |
| 9. Под                       | е задачи, представин<br>действием какой гор<br>нтальным рельсам с у                                 | изонтальной с                                                                   | лы вагонетка массой                         |                                             |                              |
| исполь<br>льда, ко<br>удельн | ну вместимостью 100 вуя воду при темпера оторый следует полож теплоёмкость льда отураплавления льда | гуре 80 <sup>0</sup> С и лёд<br>кить в ванну. У<br>2,1 кДж/кг <sup>.</sup> К, у | при температуре -20<br>дельная теплота плав | <sup>0</sup> С. Определит<br>вления льда 33 | ге массу<br>0кДж/кг,         |

# Кодификатор элементов содержания и требований к уровню подготовки обучающихся для проведения промежуточной аттестации в 11 классе

| Перечень                                                                           |                          |                                           |
|------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| элементов<br>предметного<br>содержания,<br>проверяемых на<br>контрольной<br>работе | Номе<br>р<br>задан<br>ия | Описание элементов предметного содержания |

| Код    |    |                                                       |  |
|--------|----|-------------------------------------------------------|--|
| 11.1   | 1  | Явление электромагнитной индукции. ЭДС индукции.      |  |
| 11.1 1 |    | Закон электромагнитной индукции Фарадея.              |  |
| 5.1    | 2  | Гармонические колебания. Амплитуда и фаза колебаний.  |  |
| J.1    | 2  | Кинематическое описание.                              |  |
| 13.1   | 3  | Законы отражения света. Построение изображений в      |  |
| 13.1   | 3  | плоском зеркале.                                      |  |
|        |    | Интерференция света. Когерентные источники. Условия   |  |
| 13.5   | 4  | наблюдения максимумов и минимумов в                   |  |
| 13.3   | 4  | интерференционной картине от двух синфазных           |  |
|        |    | когерентных источников.                               |  |
| 15.1   | 5  | Гипотеза М. Планка о квантах. Формула Планка. Фотоны  |  |
| 17.5   | 6  | Ядерные реакции.                                      |  |
| 17.5   | 7  | Астрономическая картина мира                          |  |
| 14.1   | 8  | Инвариантность модуля скорости света в вакууме.       |  |
| 14.1   | 0  | Принцип относительности Эйнштейна                     |  |
|        | 9  | Построение изображений точки и отрезка прямой в       |  |
| 13.3   |    | собирающих и рассеивающих линзах и их                 |  |
|        |    | системах                                              |  |
| 12.4   | 10 | Шкала электромагнитных волн. Применение               |  |
| 12.4   |    | электромагнитных волн в технике и быту.               |  |
| 2.4    | 11 | Второй закон Ньютона                                  |  |
| 9.2    | 12 | Закон Ома для полной (замкнутой) электрической цепи.  |  |
| 7.3    | 13 | Первый закон термодинамики.                           |  |
| 9.3    | 14 | Параллельное соединение проводников. Последовательное |  |
| 7.3    | 14 | соединение проводников.                               |  |
| 17.6   | 15 | Физические величины, единицы измерения, измерение     |  |
| 17.0   | 13 | физических величин, погрешности измерения.            |  |

# 1. Перечень элементов метапредметного содержания, проверяемых на контрольной работе

| Код   | Номер           | Описание элементов метапредметного содержания                    |  |  |
|-------|-----------------|------------------------------------------------------------------|--|--|
|       | задания         |                                                                  |  |  |
| 2.2.1 | 1, 2,4, 5,<br>7 | Умение определять понятия (познавательное УУД)                   |  |  |
| 2.2.2 | 10              | Умение классифицировать (познавательное УУД)                     |  |  |
| 2.2.3 | 3, 4,7,         | Умение устанавливать причинно-следственные связи (познавательное |  |  |
| 2.2.3 | 10-15           | УУД)                                                             |  |  |
| 2.2.4 | 1-15            | Умение строить логические рассуждения, умозаключения и делать    |  |  |
| 2.2.4 | 1-13            | выводы                                                           |  |  |
| 2.2.6 | 1-15            | Умение оценивать правильность выполнения учебной задачи          |  |  |
|       | 1-13            | (регулятивное УУД)                                               |  |  |

# 2. Перечень требований к уровню подготовки обучающихся

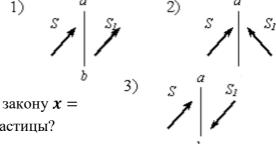
| Код | Номе<br>р<br>задан<br>ия | Описание требований к уровню подготовки обучающихся |
|-----|--------------------------|-----------------------------------------------------|
| 1.1 | 1, 2,4,<br>5, 7          | Знаниеипониманиесмыслапонятий.                      |

| 1.0   | 1, 2, 5,          | Знаниеипониманиесмыслафизическихвеличин                             |
|-------|-------------------|---------------------------------------------------------------------|
| 1.2   | 11, 12,<br>13, 14 |                                                                     |
| 1.0   | 1, 3,             | Знаниеипониманиесмыслафизических законов                            |
| 1.3   | 11, 12,<br>13, 14 |                                                                     |
|       | 1, 3, 4,          | Умение описывать и объяснять физические явления.                    |
| 2.1.1 | 8, 9,             |                                                                     |
|       | 11- 14            |                                                                     |
| 2.3   | 3, 9,             | Умение приводить примеры практического применения физических        |
| 2.3   | 10, 15            | знаний                                                              |
| 2.4   | 2                 | Умение определять характер физического процесса по графику, формуле |
|       |                   | Умение применять полученные знания для решения физических           |
| 2.6   | 1-15              | задач                                                               |

| № задания    | Количество баллов                                          |  |  |
|--------------|------------------------------------------------------------|--|--|
| 1 – 9, 11-15 | 1 балл – правильный ответ<br>0 баллов – неправильный ответ |  |  |
| ,            | Максимальное количество баллов -2                          |  |  |
| 10           | Правильно распределено 3 понятия - 2 балла                 |  |  |
| 10           | Правильно распределено 2 понятия - 1 балл                  |  |  |
|              | Правильно распределено 1 понятие -0 баллов                 |  |  |
| Итого        | 16 баллов                                                  |  |  |

# Перевод баллов к 5-балльной отметке

| Баллы    | Отметка |
|----------|---------|
| 16-14    | 5       |
| 13-11    | 4       |
| 10 - 7   | 3       |
| меньше 7 | 2       |


# Коды правильных ответов

| № задания | твет      |           |
|-----------|-----------|-----------|
|           | Вариант 1 | Вариант 2 |
| 1         | A         | В         |
| 2         | A         | Б         |
| 3         | Б         | A         |
| 4         | Б         | A         |
| 5         | Б         | Б         |
| 6         | A         | A         |
| 7         | A         | В         |
| 8         | A         | A         |
| 9         | Б         | Б         |
| 10        | 541       | 213       |
| 11        | Б         | Б         |
| 12        | В         | A         |
|           |           |           |

| Б |
|---|
| A |
|   |
| В |
|   |

#### Промежуточная аттестация в 11 классе. Контрольная работа. Вариант 1

1. За 3 секунды магнитный поток, пронизывающий проволочный контур, равномерно увеличился с 6 Вб до 9 Вб. Чему равно при этом значение ЭДС индукции в контуре? A. 1 B Б. 3 В B. 6 B



**2.** Частица совершает гармонические колебания по закону x = 0**20**  $\cos \frac{\pi}{6} t c m$ . Чему равна амплитуда колебаний частицы?

A. 20 M B.  $\frac{\pi}{6}$  cm

3. Предмет S отражается в плоском зеркале ab. Изображение предмета верно показано на рисунке

A. 1

Б. 2

B. 3

4. Две когерентные световые волны приходят в некоторую точку пространства с разностью хода 2,25 мкм. Каков результат интерференции в этой точке, если свет красный ( $\lambda = 750$  нм)?

А. Ослабление света

Б. Усиление света

В. Может быть что угодно.

**5.** Найдите длину волны света, энергия кванта которого равна  $3,6 \cdot 10^{-19}$  Дж.

В. 2.75 •10<sup>-7</sup> м

**6.** Допишите ядерную реакцию  ${}_{3}^{6}Li + {}_{1}^{1}H = {}_{2}^{4}He + \cdots$ 

A. <sup>3</sup>*He* Б. <sup>4</sup>*He* 

B.  ${}_{1}^{3}H$ 

7. Обладают малой средней плотностью, не имеют твёрдой поверхности, быстро вращаются, окружены кольцами. Что это за объекты?

А. Планеты-гиганты

Б. Планеты земной группы

В. Звёзды

**8.** С ракеты, приближающейся к Земле со скоростью v, послан световой сигнал на Землю. Чему равна скорость этого сигнала относительно Земли?

A. *c* 

Б. c + v

B. c-v

9. Какое изображение получается на матрице фотоаппарата?

А. мнимое, уменьшенное, прямое

Б. действительное, уменьшенное, перевёрнутое

В. действительное, уменьшенное, прямое

10. К каждой позиции первого столбца подберите соответствующую позицию второго

#### Электромагнитное излучение

#### Применение излучения

А. инфракрасное

1. Солярий

излучение

2. Радиоприёмник

Б. рентгеновское

3. Лазер

излучение

4. Флюорографическая установка

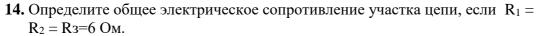
В. ультрафиолетовое

излучение

5. Пульт дистанционного управления телевизором.

- 11. Как будет двигаться тело массой 5 кг под действием силы 10Н?
  - А. Равномерно со скоростью 2 м/с. Б. Равноускорено с ускорением  $2 \text{ м/c}^2$ .
  - В. Будет покоиться.
- 12. К источнику тока с ЭДС, равной 24 В, и внутренним сопротивлением 2 Ом подключили электрическое сопротивление 4 Ом. Определите силу тока в цепи при коротком замыкании

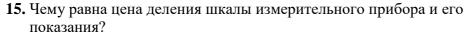
A. 4 A


Б. 12 А.

B. 6 A

13. Газу передали количество теплоты 300 Дж, и над ним совершили работу 500 Дж. Чему равно изменение его внутренней энергии?

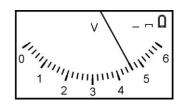
А. 200 Дж


Б. – 200 Дж В. 800 Дж



А. 18 Ом

Б.12 Ом


В. 9 Ом



A. 0,2 B, 4,6 B

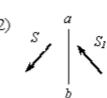
Б. 0,2 А, 4,6 А

B. 0,1 B, 4,3 B



### Промежуточная аттестация в 11 классе. Контрольная работа. Вариант 2

1. За 5 секунд магнитный поток, пронизывающий проволочный контур, равномерно увеличился с 6 Вб до 9 Вб. Чему равно при этом значение ЭДС индукции в контуре?


A. 1 B

Б. 0,3 В

B. 0,6 B

2. Заряд на пластинах конденсатора колебательного контура меняется с течением времени в соответствии с уравнением $q = 10^{-6} Cos 10^4 \pi t K \pi$ . Чему равна амплитуда колебаний заряда?

1)



А.  $10^4$ Кл Б.  $10^{-6}$ *Кл* В.  $10^4 \pi K_{\rm A}$ 

3. Предмет S отражается в плоском зеркале ab. Изображение предмета верно показано на рисунке 3)

A. 1

Б. 2

B. 3

4. Две когерентные световые волны приходят в некоторую точку пространства с разностью хода 2,25 мкм. Каков результат интерференции в этой точке, если свет красный ( $\lambda = 500$  нм)?

А. Ослабление света

Б. Усиление света

В. Может быть что угодно.



5. Найдите частоту волны света, энергия кванта которого равна 3,6 •10<sup>-19</sup> Дж.

А. 0,54 •10<sup>14</sup> Гц Б. 5,4 •10<sup>14</sup> Гц

6. Допишите ядерную реакцию  ${}^{14}_{7}N + {}^{4}_{2}He = {}^{17}_{8}O + \cdots$ 

A.  ${}_{1}^{1}H$ 

Б. <sup>4</sup>Не

B.  ${}_{1}^{3}H$ 

7. Какие утверждения верны: 1) Планеты движутся по эллиптическим орбитам.

2) Скорости планет различны в разных точках орбиты?

А. верно только 1

Б. верно только 2

В. верны оба.

8. С ракеты, удаляющейся от Земли со скоростью у, послан световой сигнал на Землю. Чему равна скорость этого сигнала относительно Земли?

- $\mathbf{b}$ .  $\mathbf{c} + \mathbf{v}$
- B. c-v
- 9. Какое изображение получается на экране проектора?

А. мнимое, уменьшенное, прямое

Б. действительное, увеличенное, перевёрнутое

В. действительное, увеличенное, прямое

#### 10. К каждой позиции первого столбца подберите соответствующую позицию второго

#### Электромагнитное излучение

Применение излучения

А. радиоволны

- 1. Ночной прицел
- Б. инфракрасное излучение
- 2. Телевизионный приёмник

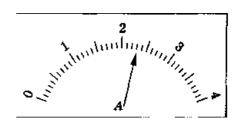
В. видимое излучение

- 3. Лазер
- 4. Флюорографическая установка
- 5. Косметический прибор «Фотон»
- 11. Как будет двигаться тело массой 15 кг под действием силы 150Н?
  - А. Равномерно со скоростью 10 м/c. Б. Равноускоренно с ускорением  $10 \text{ м/c}^2$ .
  - В. Будет покоиться.
- 12. К источнику тока с ЭДС, равной 24 В, и внутренним сопротивлением 2 Ом подключили электрическое сопротивление 4 Ом. Определите силу тока в цепи?

A. 4 A

- Б. 12 А.
- B. 6 A
- 13. Газу передали количество теплоты 300 Дж, и он совершил работу 500 Дж. Чему равно изменение его внутренней энергии?

А. 200 Дж


- Б. 200 Дж В. 800 Дж
- 14. Определите общее электрическое сопротивление участка цепи, если  $R_1 = R_2 = R_3 = 6$  Ом.

А. 4 Ом

- Б.12 Ом
- В. 9 Ом
- **15**. Чему равна цена деления шкалы измерительного прибора и его показания?

A. 0,1 B, 2,3 B

Б. 1 А, 2,3 А В. 0,1 А, 2,3 А

